作者:hacker 日期:2022-07-16 分类:网络教程
1、有理数定义:有理数为整数(正整数、0、负整数)和分数的统称 。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
2、有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
3、有理数包括:整数、分数。直观表示可以看下图:
扩展资料:
有理数运算定律:
1、加法运算律:
(1)加法交换律:两个数相加,交换加数的位置,和不变,即 (a+b)+c=a+(b+c)。
(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 a+b=b+a。
2、减法运算律:
减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。
3、乘法运算律:
(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即 ab=ba。
(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 (ab)c=a(bc)。
(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(a+b)=ab+ac。
参考资料:百度百科_有理数
高中数学教材第一章是高中数学的基础有理数集的定位,学好这一章内容是十分关键的。第一章主要包括集合与函数概念,内容有一定的抽象性,研究的方法也与初中数学不一样,因此设计好这一章内容的教学显得尤为重要。教材中对集合的定位是将集合作为一种语言来学习,希望通过教学使学生感受到用集合表示数学内容时的简洁性、准确性,并使学生能用集合语言简洁、准确地表示数学对象,为他们以后的学习和发展打下一定的基础。但在教学中不要过分强调细枝末节的讲解和训练,避免人为地编制一些繁难的偏题。【教学目标】通过学习,学生达到以下要求:初步理解集合的概念,知道常用数集极其记法;初步了解“属于”关系的意义;初步了解有限集、无限集、空集的意义【教学的重点与难点】重点:集合的概念与表示方法。难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合【教学流程】1.问题引入:(1) 向全班同学介绍自己的家庭;(2) 介绍自己初中时的学校;(3) 介绍自己现在的班级。2.集合的概念:一般地,某些指定对象的全体就成为一个集合,也简称集。集合中的每一个对象叫做这个集合的元素。☆ 集合是没有给出严格定义的数学概念,与初中时学习过的点、线、面类似。☆ 元素与集合之间有属于与不属于两种。-----练习:(1)课本P6:1(1) (2)一条直线可看作由 组成的集合;一个平面可看作由 组成的集合;一个圆可看作由 组成的集合。☆ “对象”即集合中的“元素”不拘泥与“数”或“点”3.练习巩固:-----①.考察下列每组对象是否能构成一个集合?(1) 所有的好人(2) 不超过20的非负数(3) 有理数集的定位我们班16周岁以下的学生(4) 高个子的人(5) 充分接近 的实数小结:给定的集合,它的元素必须是确定的;一个给定集合中的元素是互不相同的只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。-----②.(1)满足 的实数能否构成一个集合,为什么?(2)满足 的实数能否构成一个集合,为什么?-----③.已知集合M={a,b,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( )。A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形4.常用数集的记法常用数集简称记法全体非负整数的集合非负整数集(或自然数集)N非负整数集内排除0的集合正整数集全体整数的集合整数集Z全体有理数的集合有理数集Q全体实数的集合实数集R※ 非负整数集内排除0的集,表示成 ,Q,R,Z等其它数集内排除0的集,也是这样表示,如整数集内排除0的集,记做 。5.集合的常用表示方法:▲ 列举法:将集合中的元素一一列举出来,并用大括号括起来。例:列举法表示“中国古代的四大发明”构成的集合;思考:能否用列举法表示“小于1的一切正数”构成的集合?▲ 描述法:把集合中元素的公共属性描述出来,写在大括号内的方法,它的一般形式是 例:描述法表示“小于1的一切正数”构成的集合?-------练习:用语言描述课本P6:练习1(2),(3),(4)中的集合A,B,C是怎样的集合。并完成练习▲ 图示法(韦恩图法)画一条封闭的曲线,用它的内部来表示一个集合。练习巩固:课本P6:练习2 小结:列举法的特点是:直观、明白,但有其局限性,如“小于1的一切正数”构成的集合;就不能把它的元素一一列举出来或列举出有足够代表性且反应出规律的元素。故无限集一般不用列举法。描述法具有抽象概括、普遍性的特点。使用描述法时,应注意:写清楚集合中元素的代号;说明该集合中元素的性质;不能出现未被说明的字母;多层描述时,应准确使用“且”,“或”;所有描述的内容都要写在大括号内;用于描述的语句力求简明、准确。6.集合的分类:按元素个数可分为:有限集、无限集、空集7.布置作业:(1) 课本P13:1,2,3,4(2) 查阅有关数学史上第三次数学危机的资料。【教学设计思路】1. 利用丰富的背景事例创设问题情境,帮助学生理解抽象的数学概念集合语言是现代数学的基本语言,在高中数学课程中,它也是学习、掌握和使用数学语言的基础,但这对于刚步入高中学习的高一新生来说却是抽象、枯燥的一个数学概念,因此,从学生们身边熟悉的例子引入,拉近与学生的距离,引导学生透过一系列从具体到抽象,从特殊到一般的事例了解集合的概念。2. 提供积极思考、自主探索的空间,使学生成为学习的主体丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式,因此,在本节课中设计了以下问题:①.考察下列每组对象是否能构成一个集合?(6) 所有的好人(7) 不超过20的非负数(8) 我们班16周岁以下的学生(9) 高个子的人(10) 充分接近 的实数②.(1)满足 的实数能否构成一个集合,为什么?(2)满足 的实数能否构成一个集合,为什么?让学生在独立思考,合作交流的过程中深刻体会集合中元素所具备的三种特性。同时通过解决一系列具体问题,使学生自己体会到集合各种表示法的优缺点;针对不同问题,能选用合适集合表示法。在练习过程中熟练掌握集合语言与自然语言的转换。教师在教学过程中时时监控,对学生不可能解决的问题,如集合常见表示法的写法,常见数集及其记法应直接给出,以避免出现不必要的混乱。对学生解题过程中遇到的困难给予适当点拨。总之,要改变传统教学中教师“一言堂”“满堂灌”的现象。引导学生养成良好学习习惯,真正掌握自主学习方式,最大限度的挖掘学生的学习潜力是我们教师的奋斗目标。3. 重视知识积累,让学生充分感受数学的文化价值传统的教学课堂中,薄薄的教科书就是学生的唯一世界,黑板加粉笔主宰了一切。受“教师——课本”这种单一传递结构的限制,学生的信息量处于较低水平。而今,信息技术的强大支持,使学生不仅能从大量的课外读物中寻得他们所需要的知识,还可以从网络上获取大量的信息,作业(2)就是本着让学生通过收集资料、阅读思考、合作思考等学习方式完成作业,并在此过程中感受到数学文化的熏陶。这样,一方面通过练习,提高了学生的科学文化素养,另一方面,又为学生提供一次自主学习的机会。
指两个整数的比。列如1、2、3这些都是有理数。有理数是整数和分数的集合有理数集的定位,有理数用黑体字母Q表示有理数集的定位,有理数集是实数集的子集。
整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数有理数集的定位,即无理数的小数部分是无限不循环的数。
有理数的认识
有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其有理数集的定位他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集有理数集的定位:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。
自然数集:所有的整数,不包含小数和分数。
正整数集:所有的整数,包含负整数和正整数。
有理数集:有限循环小数,分数也算。
实数集:所有的数,包含小数、整数、分数,根号。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。
公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位,起源于印度。
天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。
这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。
已有2位网友发表了看法:
访客 评论于 [2022-07-17 00:50:51] 回复
有理数、负有理数和零。2、有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母
访客 评论于 [2022-07-16 17:25:42] 回复
加数的位置,和不变,即 (a+b)+c=a+(b+c)。(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 a+b=b+a。2、减法运算律:减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。3、乘法