导航
当前位置:网站首页 > 网站黑客 > 银行精准客户定位,银行精准客户定位方案

银行精准客户定位,银行精准客户定位方案

作者:hacker 日期:2022-10-27 分类:网站黑客

导航:

[恒丰银行]基于大数据的精准营销模型应用

【案例】恒丰银行——基于大数据的精准营销模型应用 ;timestamp=1500159788ver=1signature=pCHfpePVrKXUGp39JEg577lopIPT9KCdx9FqIL2LbRmunZMQ-86itFcexY XKcX3Vb1ypwGo8v0IU6fkNgcs QIafGAccsZFmMb6yBYcuPdqH63EKBvL88BGFaUrBBPQl0v*mpgzYxrTCkcaJGaX2iIFRHZEDNCmuM0qhqqN294=

本篇案例为数据猿推出的大型 “金融大数据主题策划” 活动 (查看详情) 第一部分的系列案例/征文;感谢** 恒丰银行** 的投递

作为整体活动的第二部分,2017年6月29日,由数据猿主办,上海金融信息行业协会、互联网普惠金融研究院合办,中国信息通信研究院、大数据发展促进委员会、上海大数据联盟、首席数据官联盟、中国大数据技术与应用联盟协办的 《「数据猿·超声波」之金融科技·商业价值探索高峰论坛》 还将在上海隆重举办 【论坛详情】 【上届回顾(点击阅读原文查看)】

在论坛现场,也将颁发 “技术创新奖”、“应用创新奖”、“最佳实践奖”、“优秀案例奖” 四大类案例奖

本文长度为 6000 字,建议阅读 12 分钟

如今,商业银行信息化的迅速发展,产生了大量的业务数据、中间数据和非结构化数据,大数据随之兴起。要从这些海量数据中提取出有价值的信息,为商业银行的各类决策提供参考和服务,需要结合大数据和人工智能技术。国外的汇丰、花旗和瑞士银行是数据挖掘技术应用的先行者。在国内的商业银行中,大数据的思想和技术逐步开始在业务中获得实践和尝试。

面对日趋激烈的行业内部竞争及互联网金融带来的冲击,传统的上门营销、电话营销,甚至是扫街营销等方式跟不上时代的节奏。利用精准营销可节约大量的人力物力、提高营销精准程度,并减少业务环节,无形中为商业银行节约了大量的营销成本。

虽然恒丰银行内部拥有客户的基本信息和交易等大量数据,但是传统的营销系统并没有挖掘出行内大量数据的价值,仍然停留在传统的规则模型。当下,恒丰银行接入了大量的外部数据,有着更多的维度,如果将内部数据与外部数据进行交叉,则能产生更大的价值。客户信息收集越全面、完整,数据分析得到的结论就越趋向于合理和客观。利用人工智能技术,建立精准营销系统变得可能且必要。

恒丰银行基于大数据的精准营销方案是利用大数据平台上的机器学习模型深入洞察客户行为、客户需求,客户偏好,挖掘潜出在客户,实现可持续的营销计划。

周期/节奏

2016.4-2016.5 完成需求梳理和业务调研,并在此基础上进行总体方案设计。

2016.5-2016.8 整理银行内、外部数据,根据营销需求制定客户标签和设计文档,实施用户画像。

2016.8-2016.10 在用户画像的基础上,构建理财产品个性化推荐系统。其中包括个性化推荐算法调研,模型对比等一系列工作。

2016.10-2017.1 客户需求预测并对客户价值进行建模,并完善整合精准营销应用模型。

2017.1-2017.3 用户画像、个性化推荐、客户价值预测等精准营销模型上线。

客户名称/所属分类

恒丰银行/客户管理

任务/目标

根据零售业务营销要求,运用多种数据源分析客户行为洞察客户需求,实现精准营销与服务,提高银行客户满意度和忠诚度。

针对不同的客户特征、产品特征和渠道特征,制定不同市场推广策略。为了完成以上任务,主要从以下几个方面构建精准营销系统:

1.用户画像: 结合用户的历史行为和基本属性给用户打标签。

2.精准推荐系统: 给用户推荐个性化理财产品, 例如在微信银行中给每个客户推荐他喜欢的产品,帮客户找到其最适合的产品,增加产品的购买率。

3.需求预测和客户价值: 新产品发售的时候,找到最有可能购买该产品的客户,进行短信营销,进而提高产品响应率。客户价值精准定位,根据客户价值水平制定不同的推荐策略。银行通过计算客户使用其产品与服务后所形成的实际业务收益,充分了解每一个客户的贡献度,为管理层提供决策支撑。

挑战

项目实施过程由用户画像,精准推荐系统,需求预测和客户价值建模三部分组成,采用TDH机器学习平台Discover所提供的算法和模型库进行开发和验证。

(一)用户画像的建立

客户标签主要包含客户基本属性,客户等级标签,客户偏好标签,客户交易特征,客户流失特征,客户信用特征,客户终身价值标签,客户潜在需求标签。

(二)精准推荐系统的建立

由于系统复杂,且篇幅有限,仅对其中最重要的理财推荐系统做详细阐述。精准推荐系统架构图如下。

2.1业务问题转化为机器学习问题

业务问题

银行理财产品个性化推荐给客户。 例如在微信银行中给每个客户推荐此客户喜欢的产品,帮客户找到其最适合的产品,增加产品的购买率。

将业务问题转化为机器学习问题

理财产品种类繁多,产品迭代速度很快,客户在繁多的产品中不能快速找到适合自己的产品,因此有必要建立一个自动化推荐模型,建立客户理财偏好,给客户推荐最适合的产品。

将银行理财产品推荐业务问题转化为机器学习问题,进而利用人工智能技术提高推荐产品的点击率和购买率。例如在恰当的时间,通过用户偏好的渠道给用户推荐产品,推荐的结果为用户购买或者未购买。这个问题可以看作一个典型机器学习二分类问题:基于历史营销数据来训练模型,让模型自动学到客户购买的产品偏好,并预测客户下次购买理财产品的概率。对模型预测出所有客户对所有产品的响应概率进行排序,可选择客户购买概率最高的topN个产品推荐给客户。

下面将叙述如何构建该推荐预测模型。

2.2数据源准备

在建立的一个理财推荐模型之前,可以预见到相似的客户可能会喜好相似的产品(需要表征客户和产品的数据),同一个人的喜好可能具有连续性(购买历史交易数据,包括基金国债等),他的存款、贷款资金可能决定了他能购买什么档次的理财等等。因此,我们需要准备以下数据。

客户基本属性:客户性别,年龄,开户时间,评估的风险等级等等。

产品基本属性:产品的逾期收益率,产品周期,保本非保本,风险等级等。

客户购买理财产品的历史:在什么时候购买什么产品以及购买的金额。

客户的存款历史: 客户历史存款日均余额等。

客户的贷款历史: 客户历史贷款信息等。

客户工资:客户工资的多少也决定了客户购买理财的额度和偏好。

用户画像提取的特征:用户的AUM等级,贡献度,之前购买基金,国债的金额等。

2.3特征转换和抽取

有了这么多数据,但是有一部分特征是算法不能直接处理的,还有一部分数据是算法不能直接利用的。

特征转换

把不能处理的特征做一些转换,处理成算法容易处理的干净特征。举例如下:

开户日期。就时间属性本身来说,对模型来说不具有任何意义,需要把开户日期转变成到购买理财时的时间间隔。

产品特征。从理财产品信息表里面可以得到风险等级,起点金额等。但是并没有标志这款产品是否是新手专属,是否是忠诚客户专属。这就需要我们从产品名字抽取这款产品的上述特征。

客户交易的时间信息。同客户的开户日期,孤立时间点的交易信息不具有任何意义,我们可以把交易时间转变为距离上次购买的时间间隔。

特征抽取

还有一部分数据算法不能直接利用,例如客户存款信息,客户交易信息。我们需用从理财交易和存款表中抽取可能有用的信息。

用户存款信息:根据我们的经验,客户购买理财之前的存款变动信息更能表明客户购买理财的真实想法,因此我们需要从客户历史存款数据抽取客户近三个月,近一个月,近一周的日均余额,以体现客户存款变化。

客户交易信息:客户最近一次购买的产品、购买的金额、及其相关属性,最近一个月购买的产品、购买的金额及其相关属性等等。

以上例举的只是部分特征。

2.4构造、划分训练和测试集

构造

以上说明了如何抽取客户购买理财的相关特征,只是针对正样本的,即客户购买某种理财时候的特征。隐藏着的信息是,此客户当时没有购买其他在发售的产品。假设把客户购买了产品的标签设为1,没有购买的产品样本设为0,我们大致有如下训练样本(只列举部分特征)。

其中客户是否购买产品是我们在有监督训练的标签,也就是我们建立的是一个预测客户是否会购买产的模型。

划分训练集和测试集

考虑到最终模型会预测将来的某时间客户购买某种产品的概率,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下。假设我们有2016-09-01 ~ 2017-03-20 的理财购买相关数据。以2016-09-01 ~ 2017-03-19的理财交易数据作为训练,2017-03-20这一天的客户对每个产品是否购买的数据作为测试。以2016-09-01 ~ 2017-03-18的理财交易数据作为训练,2017-03-19这一天的客户对每个产品是否购买的数据作为测试,以此类推。

2.5模型训练

根据提取的特征,组成样本宽表,输入到分类模型,这里选择了TDH平台机器学习组件Discover所提供的近百个分布式算法进行建模和训练,同时我们还使用了特征的高阶交叉特性进行推荐的预测和分析。

2.6模型评估

评价推荐好坏的指标很多,比较常用的有

1.ROC曲线下面积(AUC)

2.logloss

3.推荐产品第一次命中rank的倒数(MRR)

4.TopN

针对银行的理财推荐实际业务,客户当天绝大多数是只购买了某一款理财,MRR(Mean Average Precision 的特殊情况)能反应这种情况下推荐的好坏。另一种直观的评价指标是TopN,假定我们只推荐N个模型认为客户最有可能购买的产品,并和真实情况比较,就能得到当天推荐的结果的混淆矩阵,TN,TP,FN,FP,recall,precision等。

我们在生产上验证了最近十天的推荐效果,即测试了2017-03-20, 2017-03-19,…… , 2017-03-11等十天的推荐效果,以下是这些结果的评价。

AUC

Logloss

MRR

0.89

0.45

0.78

也可以把新客户(之前没有购买理财)和老客户(至少购买过一次)分开评估效果。 新客户的购买占了整个理财购买的1/3 以上。

测试新客户的预测效果,可以看出模型对冷启动问题解决的好坏。

对新客户的预测效果

AUC

Logloss

MRR

0.80

0.73

0.32

对老客户的预测效果

AUC

Logloss

MRR

0.92

0.38

0.88

2.7模型优化

1.上线之前的优化:特征提取,样本抽样,参数调参

2.上线之后的迭代,根据实际的A/B testing和业务人员的建议改进模型

(三)需求预测和客户价值

“顾客终生价值”(Customer Lifetime Value)指的是每个购买者在未来可能为企业带来的收益总和。研究表明,如同某种产品一样,顾客对于企业利润的贡献也可以分为导入期、快速增长期、成熟期和衰退期。

经典的客户终身价值建模的模型基于客户RFM模型。模型简单的把客户划分为几个状态,有一定意义但不一定准确,毕竟RFM模型用到的特征不全面,不能很好的表征客户的价值以及客户银行关系管理。

为了方便的对客户终身价值建模,有几个假定条件。其一把客户的购买价值近似为客户为企业带来的总收益,其二把未来时间定义在未来一个季度、半年或者一年。也就是我们通过预测客户在下一个时间段内的购买价值来定义客户的终身价值。因此,我们将预测的问题分为两个步骤:第一步预测这个客户在下一个阶段是否会发生购买(需求预测)。第二步对预测有购买行为的客户继续建模预测会购买多大产品价值。

3.1需求预测

提取客户定活期存款、pos机刷卡、渠道端查询历史等特征,以这些特征作为输入预测用户在当前时间节点是否有购买需求,训练和测试样本构造如下:

1.历史用户购买记录作为正样本。

2.抽样一部分从未购买的理财产品的用户作为负样本集合Un,对于每一个正样本Un中随机选取一个用户构造负样本。

3.选取2016.04-201610 的购买数据作为训练样本,2016.11的数据作为测试样本。

使用机器学习算法进行分类训练和预测,重复上述实验,得到下列结果:

AUC: 0.930451274

precision: 0.8993963783

recall: 0.8357507082

fmeasure: 0.8664062729

进一步对客户分群之后,可以更好的对新客户进行建模,对于老客户我们可以进一步提取他们的历史购买特征,预测他们在下一段时间内购买的产品价值(数量,金额等),对于新客户,可以进根据他的存款量预测其第一次购买的产品价值,把存款客户变成理财客户。通过分析客户存款变动于客户购买理财的关系,我们发现客户购买理财的前一段时间内定活期的增加的有不同的模式,如下图。

根据需求预测模型,我们给出新客户最有可能购买的top N 列表,然后由业务人员进行市场推广。

3.2客户价值预测

进一步预测有购买需求的客户的购买价值高低。这是个回归问题,但是预测变量从二分类变量变为预测连续的金额值。训练的时候预测值取训练周期内(一个月或者季度)客户所购买的总金额。

算出客户的当前价值(即当前阶段购买的产品价值)和未来价值(预测的下一个阶段的客户价值)可以帮助我们鉴定客户处于流失阶段,或者上升阶段,或者是稳定阶段。当前价值取的是当前时间前三个月的交易量。对流失阶段高价值客户可以适当给予营销优惠,对于有购买意向的客户适当引导。如下图所示。

结果/效果

一是提高银行营销准确性。随着客户不断增加,理财产品也在不断推陈出新,在实时精准营销平台的帮助下,银行从以前盲目撒网式的营销方式转变到对不同客户精准触达,提高了理财产品的营销成功率,降低销售和运作成本。理财产品推荐的上线以来,产品推荐成功率比专家经验排序模型最高提升10倍。

二是增加银行获客数量。精准营销系统洞察客户潜在需求和偏好,提高了银行获取目标客户群的准确率。从数百万客户中,通过机器学习模型,找到最有可能购买产品的客户群,通过渠道营销,实现响应率提升。相比传统盲发模式,发送原38%的短信即可覆盖80%的客户。

通过构建基于大数据的精准营销方案,恒丰银行深入洞察客户行为、需求、偏好,帮助银行深入了解客户,并打造个性化推荐系统和建立客户价值预测模型,实现可持续的营销计划。

【案例分享】某银行用这20件事,实现数字化转型

【案例分享】某银行用这20件事,实现数字化转型

1.项目背景

随着银行各业务的精细化运营,经营活动从批量式逐步向互动式、个性化、场景化方式转变,越来越多的银行都在运用数据来构建自己的精准营销渠道和场景,某银行零售事业部在此潮流之下希望能够尽快突破现状,建立数字化的解决方案来应对竞争和客户流失。

2.痛点分析

某银行零售事业部现在面临的两大问题,一方面是来自客户的,另一方面是来自竞争者的。

客户对银行的期望发生了变化,他们希望银行能够实现定制化的服务,提高服务的协作性、便利性、一致性以及控制性。

与此同时,竞争者正积极利用数字创新重新定义价值创造,以便更好地满足被忽略或未获满足的客户需求。这就出现了同一区域的不同银行利用数字化技术来抢占本地客户的现象。

另外,该银行零售事业部的高管存在对数智化理解不多的情况,对如何实现银行的数智化转型缺乏认知,甚至束手无措,即使花费了大量的钱也没有获得想要的效果。

3.解决方案

面对这些问题和挑战,该银行牵手国云数据一起为该银行零售部定制应对自身发展的解决方案。

第一步:国云数据通过对该银行全面的调研,帮助其打造战略、业务、需求、应用、算法、数据等六大地图,从而帮助其找到问题症结。

图片

第二步:在确定完战略地图后,把战略转化成能执行的20件事情,做好这个20件事情意味着转型基本成功,让事业部有明确的目标感。

(1)建设新零售数字化中台。打通个金、互金、CRM、数据仓库及外部购买三方数据、政府数据、互联网数据;

(2) 建立新零售用户,建立产品、网点等数据资产池,建立新零售数据组织,实现数据自助分析和提升,大大提高运营效率,让数据看得见、用的到,

(3) 建立数据驱动运营体系;

精细化运营:用户分群;重点客群画像:中老、商贷、亲子等不同客户的不同运营策略和方法;

存量运营:代发工资用户贡献提升。对代发工资用户做用户画像,智能交叉销售

(4) 产品推荐:建立客户分层差异化营销服务体系,定位和聚焦重点战略客群

(5) 提升客户经营服务能力,深度经营实现价值提升,提升流失客户挽回能力,并利用大数据技术建立高效的客户流失预警体系,实现流失预警、提示、催促提前挽回、自动挽回

(6) 建立客户画像。建立网易贷获客模型和风险模型,自动智能筛选个贷客户白名单

(7) 建立客户裂变系统。通过客户推荐客户的方式实现客户高质量裂变,画出主推客户的画像以及主推客户的关系链,实现一键推荐,推荐有奖;

(8) 建立竞争情报系统。实时监控竞争对手及竞品的动态,帮助更合理更实时的定价调价、制定营销策略、爆品调整、产品组合推荐策略等;

(9) 理财用户。做大理财用户规模、精准获客模型,做强财富管理,加速扩张信用卡,丰富财富管理产品线。利用技术模型实现精准获客模型,给一线员工精准推荐财务管理潜在白名单,通过给财富管理客户建立实时动态画像,让一线员工提供定制、贴身、以咨询为导向的营销服务模式;

(10) 推动精细化销售管理体系,建立总-分-支常态化检视督导,实现军事化目标管理;

(11) 打造新零售总部数据化运营和指挥系统:以战略目标为导向,梳理业务详细关键指标,全链路闭环运营,实现精细化运营实时动态管控;

(12) 实时预警:调整分行零售总行数字化管理系统、根据总行策略,实时可下发任务系统;

(13) 网点画像:实现网点数字化、经营状况、健康指数分析,基于网点画像指导网点优化,对不同网点进行排名、相互学习、经验分享;

(14) 推动线下渠道优化:建立网点选址系统提供个性精准的选址方案、建立网点周边白名单用户精准推荐系统,根据内外部数据精准获取用户并让网点精准;

(15) 对销售一线人员实现数字化客户管理;

(16) 迭代创新线上渠道:建立手机银行端到端的客户行为追踪系统,从用户登陆到转化每个环境,指导手机银行优化,提供转化率;

(17) 基于数据分析和精准营销推荐:将结果推荐手机银行,客服中心转型为重要的线上渠道,承接营销和客户经营职能,成为半利润中心;

(18) 线上线下一体化经营:线上精准定位高潜客户并向线下推送,线下网点引流客户至线上虚拟店,从单一、各自孤立的渠道向融合渠道转型;

(19) 前线赋能系统:利用数据分析、客户推荐和销售激励实现自动化过程管理,并建设高产能,专业化前线团队实现数字化绩效,让每个员工知道今天的动作,动作换来的收入,以及收入状况;

(20) 数智化用户管理系统:让前线员工清楚的看到自己客户的动态、实现复购提醒、自动定制方案等方案。

第三步:基于这20件事情,快速帮助该行零售事业部构建了该部门数字化平台,包含数据中台、智能营销云平台等,并和该银行的科技部无缝对接,一方面快速满足了零售部的需求,又避免了过去投入大而效果不明显的状况,用20%的预算完成了既定目标。同时针对银行零售部的高管、中层人员等都做了不同程度的数字化转型课程培训,帮助他们迅速理解数字化转型的方法论及相关实现路径和产品。

4.最终效果

通过数据中台构建,解决了该银行因传统方式反复重建,每个烟囱投入大,建设周期长、无法快速响应业务等方面的问题。帮助银行深化客户经营、丰富产品服务、推动综合营销、加速渠道转型。新客获取成本比以往降低了5个百分点,同时挽回了上万个流失客户,实现不同渠道间轻松转化,年度初步统计降低投入及人员成本500万。

5.关于国云数据

国云数据集团是由原阿里数据团队建立的以独创的“数字化转型合伙人”的方式为客户提供数字化转型服务的公司,也是一家能为客户提供“战略+技术+人才”三位一体全方位、高标准数字化转型落地综合服务的供应商。

国云数据独创数字化转型方法论指导客户数字化转型落地,该方法论最近已衍生为《数字化转型方法论:落地路径与数据中台》,由机械工业出版社出版,作者为公司创始人马晓东,该书现在已全面发售。《数字化转型方法论:落地路径与数据中台》是一部从战略、技术、人才和管理4个维度全面阐述企业数字化转型方法论的著作,是国云数据服务7万余家企业的经验总结。

我在做银行,怎么才能找到精准有效的客户呢?

最好的方法就是主动为自己的产品做广告,被动加好友引流!这样来的人都是有需求,或者是对你产品感兴趣的精准顾客

农商银行精准营销如何突破重围?

随着互联网技术的快速迭代发展,互联网巨头、上市公司、银行、金融科技公司等成为市场的主力,流量红利时代已经过去,大家都在争抢用户的注意力,我们进入了一个高成本的获客时代。

农商银行面临来自金融行业的多方压力,包括国有银行、商业银行和城商行多重竞争压力;第三方互联网金融逐渐渗透至支付结算、信贷融资、 资金理财等银行传统的领域,依托互联网提供更便捷的金融服务;农商银行业务范围开展受地域合规限制,客户范围规模受限。

这种大环境下怎样突破精准营销获客瓶颈,减少客户流失,在高成本低效率获客时代突破重围对于银行营销来说至关重要,是银行实现智慧转型的助推器。

农商银行的精准营销业务存在的问题:

对于传统银行机构而言,以往依靠大量物理网点作为主要营销获客服务渠道,客户难以找到合适的银行产品以及业务,新生代客户对传统银行的产品依赖性不强。这种获客方式不仅运营成本高,也难以适应移动互联网环境下用户的消费需求。从而导致新增用户成本高,现有客户流失率高以及客户经理效率等等问题。银行需要更高效低成本的获客方式,并且提升存量客户的粘性。

针对银行客户的这些痛点和业务需求,排列科技为银行客户提供了相应的金融科技服务—— 智方达 精准营销获客解决方案。

什么是精准营销获客?

精准营销是通过对客户各个维度的数据分析,针对顾客偏好,有针对性的进行营销,相较于传统粗放式的经销大大节约获客成本,提高获客效率。

比如拿银行业务具体的应用场景来说,银行可以利用自身数据(人口属性+信用信息)+移动设备位置信息+社交购房/消费强相关信息,构建清晰的用户画像,寻找即将购车/购房的目标客户,为其提供金融服务(抵押贷款/消费贷款)。并且在获得用户后,通过用户流失模型预估和减少存量客户的流失率。

构建用户画像和客户流失模型提升营销效果

1、 用户标签体系建设 360°精准用户画像

通过自有数据和第三方数据,构建基于机器学习的精准推荐算法,形成360度用户画像。构建用户画像的核心工作即是给用户贴多维度的“标签”——用数据来描述人的行为和特征,而标签是通过对用户信息分析而来的高度简练的特征标识。

例如,某银行线上房抵贷客户相对来说均是高净值的客户,而想要将这批客户留存在银行业务内就需要采取较为精细化的运营方式,需要对用户有清晰的理解。用户画像能够清晰刻画客户身上所具有的标签特征,而且能够知道哪些人是同类型的客户,哪些人是具有特殊爱好的客户,给予业务人员针对不同人群采取个性化运营手段提供参考。

银行有了这些用户画像以后,银行业务人员可以根据客户特点对其配置相应的权益,促进客户活跃,提高用户留存率,让这批客户可以更多的使用银行内部的适合客户自身情况的其他业务,不仅为银行方创造更多价值,而且可以为客户提供更加精准及时的业务路径。

2、 建立用户流失模型

高端个人客户数量少、价值高、利润丰厚,对商业银行发展极为重要,一般来说,20%的优质个人客户贡献了80%以上的利润。由于各种因素的不确定性和市场的不断增长,以及一些竞争对手的存在,很多客户转向其它银行,只是为了求得更低的费用以及得到更好的服务,这种客户流失在银行是普遍存在的问题。客户流失导致的损失是巨大的,因为获取一个新客户,要在销售、市场、广告和人员工资上花费很多,而且大多数新客户产生的利润不如那些流失的客户多。因此保住老客户,提前预测出潜在的流失客户, 防止因客户流失而引发的经营危机,对于提高银行的竞争力具有战略意义。

例如针对某银行的客户情况, 通过与业务部门沟通,此次模型的目标主要有以下两点:

1、通过前期数据建立模型,利用模型每个月给出客户下个月的资产是否会流失。

2、在现有数据的基础上,尽量精准的进行预测。忽略突发降星的情况。

本次模型主要针对中高端客户,客户资产月日均高于20万的客户,客户资产定义为:活期+定期+理财。

模型建立过程简单来说有以下几个步骤:

1. 数据清洗

2. 变量分析

3. 模型算法

4. 模型结果验证

5. 最后输出模型报告。

通过构建多维度的用户画像和准确的客户流失模型,排列科技帮助某农商银行客户显著提升了营销效果。包括过滤大量无效客户,从千万客户中筛选出30%的意向客户,再精选出白名单客户;极大提高转化率,推荐的精选客户转化率明显提升至50%;农商银行的单个获客成本大幅度降低。

银行到店客户精准营销怎么做?

去银行办理业务的客户都是刚需客户,但是去哪个行却不是刚需,想要客户持续留存,需要先梳理好客户需求种类,看一下到店的顾客大致有几种需求,再根据你想推广的产品,逐渐网上靠,具体产品具体分析,纯手打,希望采纳

银行存量客户精准营销四必做的内容是什么?

主要包括沙龙营销,兴趣投资,节日营销还有事件营销,这几部分大概构成了存量客户必备的几个方式跟内容。

1.沙龙营销的主要目标是培养客户黏性,营销新产品。沙龙营销的模式在近几年被广泛运用在网点营销活动中。沙龙活动的形式变化多端,效果也参差不齐。归纳起来一般有以下几类沙龙营销的模式:理财客户转介绍沙龙、高端客户私享沙龙、新产品推荐沙龙、老客户服务沙龙、流量客户开拓沙龙。

2.这种营销模式重在持续,兴趣平台能够促使客户长期、可持续地与银行发生联系。这是建立客户黏性最有效的方法。这种兴趣营销的好处就是可以跟客户在业务之外的某些特定环境发生链接,这种情感基础的培养要比单纯的买卖关系好很多倍。最重要的是,基于共同的兴趣爱好,老客户不仅能与我们保持更好的关系,还能为我们带来更多拥有相同爱好的朋友。

3.节日营销已经普遍存在于各行各业,只要一到节日,大街小巷的打折信息眼花缭乱,线上线下的节日活动目不暇接。要想在节日营销中脱颖而出,作为金融工作者,农商行要认真思考,推陈出新,运用新颖的营销手段吸引客户,为客户创造优质体验。节日营销是每个以销售为目标的组织体都要把控的重要营销契机,一方面我们不能放弃特定节日的营销,因为这种营销模式已经深入人心;另一方面,我们要考虑如何做好节日营销方案,给客户留下值得回忆的瞬间。参与性的活动方案是最适合节日营销的方案,我们要参与到对客户来说很重要或很有纪念意义的日子中,以此提升客户对银行的认知,强化客户与银行之间的关系。

4.事件营销在自媒体时代,在“人人拥有麦克风”的媒介生态环境下,来自社会各个阶层的“草根直播”开始通过网络表达自己的观点,发布发生在身边的新闻事件,那些紧紧把握时下最火爆事件进行营销的方法特别有助于提升关注度和点击率。农商行只要对时事多加用心关注,并且巧妙地推送软文,即可吸引客户的眼球,获得客户的关注或者传播。 事件营销是一种很巧妙的营销方式,这种方式不一定能够快速。

猜你还喜欢

已有1位网友发表了看法:

  • 访客

    访客  评论于 [2022-10-27 03:57:03]  回复

    客户性别,年龄,开户时间,评估的风险等级等等。 产品基本属性:产品的逾期收益率,产品周期,保本非保本,风险等级等。 客户购买理财产品的历史:在什么时候购买什么产品以及购买的金额。 客户的存款历史: 客户历史存款日均余额等。 客户的贷款历史: 客户历史贷款信息等。

欢迎 发表评论:

{/if}