导航
当前位置:网站首页 > 网络教程 > 黑盒渗透测试工具,黑盒渗透测试工具有哪些

黑盒渗透测试工具,黑盒渗透测试工具有哪些

作者:hacker 日期:2022-09-02 分类:网络教程

导航:

Python渗透测试工具都有哪些

网络

Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包。可用作交互式包处理程序或单独作为一个库

pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的python库

libdnet: 低级网络路由,包括端口查看和以太网帧的转发

dpkt: 快速,轻量数据包创建和分析,面向基本的 TCP/IP 协议

Impacket: 伪造和解码网络数据包,支持高级协议如 NMB 和 SMB

pynids: libnids 封装提供网络嗅探,IP 包碎片重组,TCP 流重组和端口扫描侦查

Dirtbags py-pcap: 无需 libpcap 库支持读取 pcap 文件

flowgrep: 通过正则表达式查找数据包中的 Payloads

Knock Subdomain Scan: 通过字典枚举目标子域名

SubBrute: 快速的子域名枚举工具

Mallory: 可扩展的 TCP/UDP 中间人代理工具,可以实时修改非标准协议

Pytbull: 灵活的 IDS/IPS 测试框架(附带超过300个测试样例)

调试和逆向工程

Paimei: 逆向工程框架,包含PyDBG, PIDA , pGRAPH

Immunity Debugger: 脚本 GUI 和命令行调试器

mona.py: Immunity Debugger 中的扩展,用于代替 pvefindaddr

IDAPython: IDA pro 中的插件,集成 Python 编程语言,允许脚本在 IDA Pro 中执行

PyEMU: 全脚本实现的英特尔32位仿真器,用于恶意软件分析

pefile: 读取并处理 PE 文件

pydasm: Python 封装的libdasm

PyDbgEng: Python 封装的微软 Windows 调试引擎

uhooker: 截获 DLL 或内存中任意地址可执行文件的 API 调用

diStorm: AMD64 下的反汇编库

python-ptrace: Python 写的使用 ptrace 的调试器

vdb/vtrace: vtrace 是用 Python 实现的跨平台调试 API, vdb 是使用它的调试器

Androguard: 安卓应用程序的逆向分析工具

Capstone: 一个轻量级的多平台多架构支持的反汇编框架。支持包括ARM,ARM64,MIPS和x86/x64平台

PyBFD: GNU 二进制文件描述(BFD)库的 Python 接口

Fuzzing

Sulley: 一个模糊器开发和模糊测试的框架,由多个可扩展的构件组成的

Peach Fuzzing Platform: 可扩展的模糊测试框架(v2版本 是用 Python 语言编写的)

antiparser: 模糊测试和故障注入的 API

TAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人网络模糊测试工具

untidy: 针对 XML 模糊测试工具

Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工具

SMUDGE: 纯 Python 实现的网络协议模糊测试

Mistress: 基于预设模式,侦测实时文件格式和侦测畸形数据中的协议

Fuzzbox: 媒体多编码器的模糊测试

Forensic Fuzzing Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性

Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工具

WSBang: 基于 Web 服务自动化测试 SOAP 安全性

Construct: 用于解析和构建数据格式(二进制或文本)的库

fuzzer.py(feliam): 由 Felipe Andres Manzano 编写的简单模糊测试工具

Fusil: 用于编写模糊测试程序的 Python 库

Web

Requests: 优雅,简单,人性化的 HTTP 库

HTTPie: 人性化的类似 cURL 命令行的 HTTP 客户端

ProxMon: 处理代理日志和报告发现的问题

WSMap: 寻找 Web 服务器和发现文件

Twill: 从命令行界面浏览网页。支持自动化网络测试

Ghost.py: Python 写的 WebKit Web 客户端

Windmill: Web 测试工具帮助你轻松实现自动化调试 Web 应用

FunkLoad: Web 功能和负载测试

spynner: Python 写的 Web浏览模块支持 Javascript/AJAX

python-spidermonkey: 是 Mozilla JS 引擎在 Python 上的移植,允许调用 Javascript 脚本和函数

mitmproxy: 支持 SSL 的 HTTP 代理。可以在控制台接口实时检查和编辑网络流量

pathod/pathoc: 变态的 HTTP/S 守护进程,用于测试和折磨 HTTP 客户端

什么是黑盒测试

黑盒测试也称为功能测试,它着眼于程序黑盒渗透测试工具的外部特征,而不考虑程序黑盒渗透测试工具的内部逻辑结构。测试者把被测程序看成一个黑盒,不用关心程序的内部结构。黑盒测试是在程序接口处进行测试黑盒渗透测试工具,它只检查程序功能是否能按照规格说明书的规定正常使用黑盒渗透测试工具,程序是否能适当地接收输入数据产生正确的输出信息黑盒渗透测试工具,并且保持外部信息(如数据库或文件)的完整性。

黑盒测试主要采用的技术有:等价分类法、边沿值分析法、错误推测法和因果图等技术。

什么是K8S?

k8s是什么?

Kubernetes 是一个可移植的黑盒渗透测试工具,可扩展的开源容器编排平台,用于管理容器化的工作负载和服务,方便了声明式配置和自动化。它拥有一个庞大且快速增长的生态系统。Kubernetes 的服务,支持和工具广泛可用。

为什么现在流行使用容器?

早期: 在物理服务器上面部署应用程序存在资源分配问题,因为其不能在物理服务器中的应用程序定义资源边界,导致应用程序资源利用不足而无法扩展.

后来: 为了解决该问题,引入了虚拟化技术, 虚拟化技术是指允许你在单个物理服务器的 CPU 上运行多个虚拟机,可以让多个应用程序在虚拟机之间进行隔离,具有一定的安全性, 每一个虚拟机就是一台完整的计算机, 在虚拟化硬件之上运行所有组件.

现在: 多数在物理服务器上面部署应用程序都是采kubectl用容器的方式,容器类似于虚拟机,它们都具有自己的文件系统、CPU、内存、进程空间等, 且由于它们与基础架构分离,因此可以跨云和 OS 发行版本进行移植。基于此特点被企业大范围使用.

为什么需要使用k8s容器?

若出现这样一个环境: 在生产环境中如果一个容器发生故障,则黑盒渗透测试工具我们需要手动去启动另外一个容器,这样的操作是对黑盒渗透测试工具我们的管理员来说是不太方便的, 若一个容器出现故障,另一个容器可以自动启动容器接管故障的容器,这样是最好的.

k8s就可以实现该效果,Kubernetes 提供了一个可弹性运行分布式系统的框架。 Kubernetes 会满足你的扩展要求、故障转移、部署模式等。

k8s功能: 服务发现和负载均衡, 存储编排, 自动部署和回滚, 自动完成装箱计算, 自我修复, 密钥与配置管理

名词解释

secret

Secret有三种类型:

Service Account:用来访问Kubernetes API,由Kubernetes自动创建,并且会自动挂载到Pod的目录中;

/run/secrets/kubernetes.io/serviceaccount

Opaque:base64编码格式的Secret,用来存储密码、密钥等;

kubernetes.io/dockerconfigjson:用来存储私有docker registry的认证信息。

k8s的组成

k8s是由组件,API,对象等组成.

包含所有相互关联组件的 Kubernetes 集群图如下:

组件

控制平面组件

kube-apiserver: 为k8s的api服务器,公开了所有Kubernetes API, 其黑盒渗透测试工具他所有组件都必须通过它提供的API来操作资源数据.

保证集群状态访问的安全

隔离集群状态访问的方式和后端存储实现的方式:API Server是状态访问的方式,不会因为后端存储技术etcd的改变而改变。

etcd: 为k8s的键值数据库,保存了k8s所有集群数据的后台数据库。

kube-scheduler: 收集和分析当前Kubernetes集群中所有Node节点的资源(内存、CPU)负载情况,然后依此分发新建的Pod到Kubernetes集群中可用的节点。 kube-controller-manager: 在主节点上运行 控制器 的组件。

cloud-controller-manager: 云控制器管理器是指嵌入特定云的控制逻辑的 控制平面组件

Node 组件

kubelet: 一个在集群中每个节点(node)上运行的代理。 它保证容器(containers)都 运行在 Pod 中。

kube-proxy: kube-proxy是集群中每个节点上运行的网络代理,维护节点上的网络规则。这些网络规则允许从集群内部或外部的网络会话与 Pod 进行网络通信。

容器运行时: 负责运行容器的软件。

插件(Addons)

DNS: 集群 DNS 是一个 DNS 服务器,和环境中的其他 DNS 服务器一起工作,它为 Kubernetes 服务提供 DNS 记录。

Web 界面(仪表盘): Dashboard 是Kubernetes 集群的通用的、基于 Web 的用户界面。

容器资源监控: 容器资源监控 将关于容器的一些常见的时间序列度量值保存到一个集中的数据库中,并提供用于浏览这些数据的界面。

集群层面日志: 集群层面日志 机制负责将容器的日志数据 保存到一个集中的日志存储中,该存储能够提供搜索和浏览接口。

API

Kubernetes 控制面 的核心是 API 服务器。 API 服务器负责提供 HTTP API,以供用户、集群中的不同部分和集群外部组件相互通信。

对象

Kubernetes对象是Kubernetes系统中的持久实体。Kubernetes使用这些实体来表示集群的状态.

具体来说,他们可以描述:

容器化应用正在运行(以及在哪些节点上)

这些应用可用的资源

关于这些应用如何运行的策略,如重新策略,升级和容错

Kubernetes 架构

Kubernetes 架构由节点,控制面到节点通信, 控制器, 云控制器管理器组成.

master 流程图

Kubecfg将特定的请求,比如创建Pod,发送给Kubernetes Client。

Kubernetes Client将请求发送给API server。

API Server根据请求的类型,比如创建Pod时storage类型是pods,然后依此选择何种REST Storage API对请求作出处理。

REST Storage API对的请求作相应的处理。

将处理的结果存入高可用键值存储系统Etcd中。

在API Server响应Kubecfg的请求后,Scheduler会根据Kubernetes Client获取集群中运行Pod及Minion/Node信息。

依据从Kubernetes Client获取的信息,Scheduler将未分发的Pod分发到可用的Minion/Node节点上。

节点

节点可以是一个虚拟机或者物理机器,取决于所在的集群配置。 每个节点包含运行 Pods 所需的服务, 这些 Pods 由 控制面 负责管理.

节点上的组件包括 kubelet、 容器运行时以及 kube-proxy。

节点状态

可以使用 kubectl 来查看节点状态和其他细节信息:

kubectl describe node �节点名称

一个节点包含以下信息:

地址

HostName:由节点的内核设置。可以通过 kubelet 的 —hostname-override 参数覆盖。

ExternalIP:通常是节点的可外部路由(从集群外可访问)的 IP 地址。

InternalIP:通常是节点的仅可在集群内部路由的 IP 地址。

状况(conditions 字段描述了所有 Running 节点的状态)

Ready 如节点是健康的并已经准备好接收 Pod 则为 True;False 表示节点不健康而且不能接收 Pod;Unknown 表示节点控制器在最近 node-monitor-grace-period 期间(默认 40 秒)没有收到节点的消息

DiskPressure为True则表示节点的空闲空间不足以用于添加新 Pod, 否则为 False

MemoryPressure为True则表示节点存在内存压力,即节点内存可用量低,否则为 False

PIDPressure为True则表示节点存在进程压力,即节点上进程过多;否则为 False

NetworkUnavailable为True则表示节点网络配置不正确;否则为 False

容量与可分配描述节点上的可用资源:CPU、内存和可以调度到节点上的 Pod 的个数上限。

信息关于节点的一般性信息,例如内核版本、Kubernetes 版本(kubelet 和 kube-proxy 版本)、 Docker 版本(如果使用了)和操作系统名称。这些信息由 kubelet 从节点上搜集而来。

控制面到节点通信

节点到控制面

apiserver在安全的 HTTPS 端口(443)上监听远程连接请求

以客户端证书的形式将客户端凭据提供给 kubelet

控制面到节点

API 服务器到 kubelet连接用于

获取 Pod 日志

挂接(通过 kubectl)到运行中的 Pod

提供 kubelet 的端口转发功能。

(注: 在连接状态下, 默认apiserver 不检查 kubelet 的服务证书。容易受到中间人攻击,不安全.)

apiserver 到节点、Pod 和服务

SSH 隧道(目前已经废弃)

产生原因: 若无服务证书, 又要求避免在非受信网络或公共网络上进行连接,则可以在apiserver 和 kubelet 之间使用ssh隧道.

Kubernetes 支持使用 SSH 隧道来保护从控制面到节点的通信路径。

Konnectivity 服务为ssh隧道的替代品, Konnectivity 服务提供 TCP 层的代理,以便支持从控制面到集群的通信。

控制器

在 Kubernetes 中,控制器通过监控集群 的公共状态,并致力于将当前状态转变为期望的状态。

举个例子: 当前室内温度为20度, 我们通过调节遥控器,使其温度上升至24度, 这20度到24度的变化即为让其从当前状态接近期望状态。

控制器模式分为直接控制和通过API服务器来控制.

云控制器管理器

云控制器管理器是指嵌入特定云的控制逻辑的 控制平面组件。 云控制器管理器允许您链接聚合到云提供商的应用编程接口中, 并分离出相互作用的组件与您的集群交互的组件。

云控制器管理器中的控制器包括:

节点控制器

节点控制器负责在云基础设施中创建了新服务器时为之 创建 节点(Node)对象。 节点控制器从云提供商获取当前租户中主机的信息。

执行功能:

针对控制器通过云平台驱动的 API 所发现的每个服务器初始化一个 Node 对象

利用特定云平台的信息为 Node 对象添加注解和标签

获取节点的网络地址和主机名

检查节点的健康状况。

路由控制器Route 控制器负责适当地配置云平台中的路由,以便 Kubernetes 集群中不同节点上的 容器之间可以相互通信。

服务控制器服务(Service)与受控的负载均衡器、 IP 地址、网络包过滤、目标健康检查等云基础设施组件集成。 服务控制器与云驱动的 API 交互,以配置负载均衡器和其他基础设施组件。

Kubernetes 安全性

云原生安全

云原生安全4个C: 云(Cloud)、集群(Cluster)、容器(Container)和代码(Code)

云原生安全模型的每一层都是基于下一个最外层,代码层受益于强大的基础安全层(云、集群、容器)。我们无法通过在代码层解决安全问题来为基础层中糟糕的安全标准提供保护。

基础设施安全

Kubetnetes 基础架构关注领域

建议

通过网络访问 API 服务(控制平面)

所有对 Kubernetes 控制平面的访问不允许在 Internet 上公开,同时应由网络访问控制列表控制,该列表包含管理集群所需的 IP 地址集。

通过网络访问 Node(节点)

节点应配置为 仅能 从控制平面上通过指定端口来接受(通过网络访问控制列表)连接,以及接受 NodePort 和 LoadBalancer 类型的 Kubernetes 服务连接。如果可能的话,这些节点不应完全暴露在公共互联网上。

Kubernetes 云访问提供商的 API

每个云提供商都需要向 Kubernetes 控制平面和节点授予不同的权限集。为集群提供云提供商访问权限时,最好遵循对需要管理的资源的最小特权原则。Kops 文档提供有关 IAM 策略和角色的信息。

访问 etcd

对 etcd(Kubernetes 的数据存储)的访问应仅限于控制平面。根据配置情况,你应该尝试通过 TLS 来使用 etcd。更多信息可以在 etcd 文档中找到。

etcd 加密

在所有可能的情况下,最好对所有驱动器进行静态数据加密,但是由于 etcd 拥有整个集群的状态(包括机密信息),因此其磁盘更应该进行静态数据加密。

集群组件安全

运行的应用程序的安全性关注领域

访问控制授权(访问 Kubernetes API)

认证方式

应用程序 Secret 管理 (并在 etcd 中对其进行静态数据加密)

Pod 安全策略

服务质量(和集群资源管理)

网络策略

Kubernetes Ingress 的 TLS 支持

容器安全

容器安全性关注领域

容器搭建配置(配置不当,危险挂载, 特权用户)

容器服务自身缺陷

Linux内核漏洞

镜像签名和执行

代码安全

代码安全关注领域

仅通过 TLS 访问(流量加密)

限制通信端口范围

第三方依赖性安全

静态代码分析

动态探测攻击(黑盒)

Kubernetes架构常见问题

Kubernetes ATTACK 矩阵

信息泄露

云账号AK泄露

API凭证(即阿里云AccessKey)是用户访问内部资源最重要的身份凭证。用户调用API时的通信加密和身份认证会使用API凭证.

API凭证是云上用户调用云服务API、访问云上资源的唯一身份凭证。

API凭证相当于登录密码,用于程序方式调用云服务API.

k8s configfile泄露

kubeconfig文件所在的位置:

$HOME/.kube/config

Kubeconfig文件包含有关Kubernetes集群的详细信息,包括它们的位置和凭据。

云厂商会给用户提供该文件,以便于用户可以通过kubectl对集群进行管理. 如果攻击者能够访问到此文件(如办公网员工机器入侵、泄露到Github的代码等),就可以直接通过API Server接管K8s集群,带来风险隐患。

Master节点SSH登录泄露

常见的容器集群管理方式是通过登录Master节点或运维跳板机,然后再通过kubectl命令工具来控制k8s。

云服务器提供了通过ssh登陆的形式进行登陆master节点.

若Master节点SSH连接地址泄露,攻击者可对ssh登陆进行爆破,从而登陆上ssh,控制集群.

容器组件未鉴权服务

Kubernetes架构下常见的开放服务指纹如下:

kube-apiserver: 6443, 8080

kubectl proxy: 8080, 8081

kubelet: 10250, 10255, 4149

dashboard: 30000

docker api: 2375

etcd: 2379, 2380

kube-controller-manager: 10252

kube-proxy: 10256, 31442

kube-scheduler: 10251

weave: 6781, 6782, 6783

kubeflow-dashboard: 8080

注:前六个重点关注: 一旦被控制可以直接获取相应容器、相应节点、集群权限的服务

了解各个组件被攻击时所造成的影响

组件分工图:

假如用户想在集群里面新建一个容器集合单元, 流程如下:

用户与 kubectl进行交互,提出需求(例: kubectl create -f pod.yaml)

kubectl 会读取 ~/.kube/config 配置,并与 apiserver 进行交互,协议:http/https

apiserver 会协同 ETCD, kube-controller-manager, scheduler 等组件准备下发新建容器的配置给到节点,协议:http/https

apiserver 与 kubelet 进行交互,告知其容器创建的需求,协议:http/https;

kubelet 与Docker等容器引擎进行交互,创建容器,协议:http/unix socket.

容器已然在集群节点上创建成功

攻击apiserver

apiserver介绍:

在Kubernetes中,对于未鉴权对apiserver, 能访问到 apiserver 一般情况下就能获取了集群的权限.

在攻击者眼中Kubernetes APIServer

容器编排K8S总控组件

pods, services, secrets, serviceaccounts, bindings, componentstatuses, configmaps,

endpoints, events, limitranges, namespaces, nodes, persistentvolumeclaims,

persistentvolumes, podtemplates, replicationcontrollers, resourcequotas …

可控以上所有k8s资源

可获取几乎所有容器的交互式shell

利用一定技巧可获取所有容器母机的交互式shell

默认情况下apiserver都有鉴权:

未鉴权配置如下:

对于这类的未鉴权的设置来说,访问到 apiserver 一般情况下就获取了集群的权限:

如何通过apiserver来进行渗透,可参考:

攻击kubelet

每一个Node节点都有一个kubelet(每个节点上运行的代理)服务,kubelet监听了10250,10248,10255等端口。

10250端口,是kubelet与apiserver进行通信对主要端口, 通过该端口,kubelet可以知道当前应该处理的任务.该端口在最新版Kubernetes是有鉴权的, 但在开启了接受匿名请求的情况下,不带鉴权信息的请求也可以使用10250提供的能力, 在Kubernetes早期,很多挖矿木马基于该端口进行传播.

在配置文件中,若进行如下配置,则可能存在未授权访问漏洞.

/var/bin/kubulet/config/yaml

若10250端口存在未授权访问漏洞,我们可以直接访问/pods进行查看

根据在pods中获取的信息,我们可以在容器中执行命令

curl -Gks {namespace}/{podname}/{containername} \-d 'input=1' -d 'output=1' -d 'tty=1' \-d 'command=whoami'

上述命令得到websocket地址,连接websocket得到命令结果:

使用wscat工具连接websocket

wscat -c “{websocket}” --no-check

即可得到我们执行命令的结果.

获取token

/var/run/secrets/kubernetes.io/serviceaccount

然后即可访问kube-api server,获取集群权限

curl -ks -H "Authorization: Bearer \ ttps://master:6443/api/v1/namespaces/{namespace}/secrets

"

攻击kubelet总体步骤如下:

访问pods获取信息

获取namespace、podsname、containername

执行exec获取token

/var/run/secrets/kubernetes.io/serviceaccount

利用Token访问API Server进行对pods操作。

攻击dashboard

dashboard登陆链接如下:

dashboard界面如下:

dashboard是Kubernetes官方推出的控制Kubernetes的图形化界面.在Kubernetes配置不当导致dashboard未授权访问漏洞的情况下,通过dashboard我们可以控制整个集群。

默认情况下, dashboard是需要进行鉴权操作的,当用户开启了enable-skip-login时可以在登录界面点击Skip跳过登录进入dashboard.

通过skip登陆的dashboard默认是没有操作集群的权限,因为Kubernetes使用RBAC(Role-based access control)机制进行身份认证和权限管理,不同的serviceaccount拥有不同的集群权限。

但有些开发者为了方便或者在测试环境中会为Kubernetes-dashboard绑定cluster-admin这个ClusterRole(cluster-admin拥有管理集群的最高权限).

为Kubernetes-dashboard绑定cluster-admin 设置如下:

新建dashboard-admin.yaml内容

apiVersion: rbac.authorization.k8s.io/v1kind: ClusterRoleBindingmetadata: name: kubernetes-dashboardroleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: cluster-adminsubjects : kind: ServiceAccount name: kubernetes-dashboard namespace: kubernetes-dashboard

kubectl create -f dashboard-admin.yaml

后通过skip登陆dashboard便有了管理集群的权限.

创建Pod控制node节点,该pod主要是将宿主机根目录挂载到容器tmp目录下。

新建一个Pod如下:

通过该容器的tmp目录管理node节点的文件

攻击etcd

Kubernetes默认使用了etcd v3来存储数据, 若能na

etcd对内暴露2379端口,本地127.0.0.1可免认证访问. 其他地址要带—endpoint参数和cert进行认证。

未授权访问流程:

检查是否正常链接

etcdctl endpoint health

读取service account token

etcdctl get / --prefix --keys-only | grep /secrets/kube-system/clusterrole

通过token认访问API-Server端口6443,接管集群:

kubectl --insecure-skip-tls-verify -s --token="[ey...]" -n kube-system get pods

攻击docker remote api(Docker daemon公网暴露)

2375是docker远程操控的默认端口,通过这个端口可以直接对远程的docker 守护进程进行操作。Docker 守护进程默认监听2375端口且未鉴权.

当机器以方式启动daemon时,可以在外部机器对该机器的docker daemon进行直接操作:

docker daemon -H=0.0.0.0:2375

之后依次执行systemctl daemon-reload、systemctl restart docker

外部主机使用 即可操作暴露2375端口的主机.

-H

因此当你有访问到目标Docker API 的网络能力或主机能力的时候,你就拥有了控制当前服务器的能力。我们可以利用Docker API在远程主机上创建一个特权容器,并且挂载主机根目录到容器.

检测目标是否存在docker api未授权访问漏洞的方式也很简单,访问http://[host]:[port]/info路径是否含有ContainersRunning、DockerRootDir等关键字。

攻击kubectl proxy

二次开发所产生的问题

管理Kubernetes无论是使用 kubectl 或 Kubernetes dashboard 的UI功能,其实都是间接在和 APIServer 做交互.

如果有需求对k8s进行二次开发的话,大部分的开发功能请求了 APIServer 的 Rest API 从而使功能实现的。

例如:

给用户销毁自己POD的能力

DELETE

类似于这样去调用apiserver, 攻击者若修改namespace、pod和容器名, 那么即可造成越权.

推荐工具

Kube-Hunter扫描漏洞

kube-hunter是一款用于寻找Kubernetes集群中的安全漏洞扫描器

下载地址:

CDK(强推)

CDK是一款为容器环境定制的渗透测试工具,在已攻陷的容器内部提供零依赖的常用命令及PoC/EXP。集成Docker/K8s场景特有的 逃逸、横向移动、持久化利用方式,插件化管理。

下载地址:

参考链接

渗透测试。黑盒测试怎样转渗透测试,学要学习什么?

要学黑盒渗透测试工具的有很多黑盒渗透测试工具,白盒测试复杂些黑盒渗透测试工具,要求编程能力,能够看懂代码,白盒测试主要由开发人员来做,具体的要求要看产品使用哪种语言开发,当然也可以使用一些工具来做代码审查之类,如XUnit……

黑盒测试可以不用关心程序的内部设计,只需关注输入输出即可,很多公司都是以黑盒测试为主的,要黑盒渗透测试工具了解软件测试的基础知识,如:软件测试用例设计方法(等价类划分法、边界值分析法……)

对于新手,可以看自己的能力,如果开发能力较强,可以从白盒测试入手,但不管哪种测试,都需要软件测试的基础知识,如测试流程、测试方法……

黑盒、白盒和灰盒测试的基本概念?

黑盒、白盒和灰盒测试的基本概念

1. 黑盒测试

黑盒测试也称功能测试或数据驱动测试,它是在已知产品所应具有的功能,通过测试来检测每个功能是否都能正常使用,在测试时,把程序看作一个不能打开的黑盆子,在完全不考虑程序内部结构和内部特性的情况下,测试者在程序接口进行测试,它只检查程序功能是否按照需求规格说明书的规定正常使用,程序是否能适当地接收输入数锯而产生正确的输出信息,并且保持外部信息(如数据库或文件)的完整性。

 

黑盒测试方法主要有等价类划分、边值分析、因—果图、错误推测等,主要用于软件确认测试。“黑盒”法着眼于程序外部结构、不考虑内部逻辑结构、针对软件界面和软件功能进行测试。“黑盒”法是穷举输入测试,只有把所有可能的输入都作为测试情况使用,才能以这种方法查出程序中所有的错误。实际上测试情况有无穷多个,人们不仅要测试所有合法的输入,而且还要对那些不合法但是可能的输入进行测试。

 

2. 白盒测试

白盒测试也称结构测试或逻辑驱动测试,它是知道产品内部工作过程,可通过测试来检测产品内部动作是否按照规格说明书的规定正常进行,按照程序内部的结构测试程序,检验程序中的每条通路是否都有能按预定要求正确工作,而不顾它的功能,白盒测试的主要方法有逻辑驱动、基路测试等,主要用于软件验证。

“白盒”法全面了解程序内部逻辑结构、对所有逻辑路径进行测试。“白盒”法是穷举路径测试。在使用这一方案时,测试者必须检查程序的内部结构,从检查程序的逻辑着手,得出测试数据。贯穿程序的独立路径数是天文数字。但即使每条路径都测试了仍然可能有错误。第一,穷举路径测试决不能查出程序违反了设计规范,即程序本身是个错误的程序。第二,穷举路径测试不可能查出程序中因遗漏路径而出错。第三,穷举路径测试可能发现不了一些与数据相关的错误。

3. 灰盒测试

灰盒测试,确实是介于二者之间的,可以这样理解,灰盒测试关注输出对于输入的正确性,同时也关注内部表现,但这种关注不象白盒那样详细、完整,只是通过一些表征性的现象、事件、标志来判断内部的运行状态,有时候输出是正确的,但内部其实已经错误了,这种情况非常多,如果每次都通过白盒测试来操作,效率会很低,因此需要采取这样的一种灰盒的方法。

 

灰盒测试结合了白盒测试盒黑盒测试的要素。它考虑了用户端、特定的系统知识和操作环境。它在系统组件的协同性环境中评价应用软件的设计。

 

灰盒测试由方法和工具组成,这些方法和工具取材于应用程序的内部知识盒与之交互的环境,能够用于黑盒测试以增强测试效率、错误发现和错误分析的效率。

 

灰盒测试涉及输入和输出,但使用关于代码和程序操作等通常在测试人员视野之外的信息设计测试。

在对一个网站进行渗透测试时要用到哪些工具

要做网站渗透测试,首先我们要明白以下几点:

1、什么叫渗透测试?

渗透测试最简单直接的解释就是:完全站在攻击者角度对目标系统进行的安全性测试过程。

2、进行渗透测试的目的?

了解当前系统的安全性、了解攻击者可能利用的途径。它能够让管理人员非常直观的了解当前系统所面临的问题。

3、渗透测试是否等同于风险评估?

不是,你可以暂时理解成渗透测试属于风险评估的一部分。事实上,风险评估远比渗透测试复杂的多,它除渗透测试外还要加上资产识别,风险分析,除此之外,也还包括了人工审查以及后期的优化部分。

4、渗透测试是否就是黑盒测试?

否,很多技术人员对这个问题都存在这个错误的理解。渗透测试不只是要模拟外部黑客的入侵,同时,防止内部人员的有意识(无意识)攻击也是很有必要的。

5、渗透测试涉及哪些内容?

技术层面主要包括网络设备,主机,数据库,应用系统。另外可以考虑加入社会工程学(入侵的艺术/THE ART OF INTRUSION)。

6、渗透测试有哪些不足之处?

主要是投入高,风险高。而且必须是专业的网络安全团队(或公司,像网堤安全)才能相信输出的最终结果。

看完以上内容,相信大家已经明白渗透测试是不能光靠工具的,还要有专业的人员才行。推荐还是选择专攻网络安全这一块的公司或团队进行。

猜你还喜欢

已有3位网友发表了看法:

  • 访客

    访客  评论于 [2022-09-02 16:33:16]  回复

    器管理器是指嵌入特定云的控制逻辑的 控制平面组件。 云控制器管理器允许您链接聚合到云提供商的应用编程接口中, 并分离出相互作用的组件与您的集群交互的组件。云控制器管理器中的控制器包括:节点控制器节点控制器负责在云基础设施中创建了新服务器时为之 创建 节点(Node)对象。 节点控制

  • 访客

    访客  评论于 [2022-09-02 14:43:14]  回复

    ng Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工

  • 访客

    访客  评论于 [2022-09-02 15:32:53]  回复

    tp/httpsapiserver 与 kubelet 进行交互,告知其容器创建的需求,协议:http/https;kubelet 与Docker等容器引擎进行交互,创建容器,协议:http/unix so

欢迎 发表评论:

{/if}